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Abstract - To investigate the applicability of the decorated~-UNIQUAC model for multicomponent multiphase liquid
mixtures, equilibrium calculations were carried out for a variety of model ternary systems, and some typical predictions
were introduced. The predicted phase behavior was less limited and more complicated than that of UNIQUAC without
disagreement with experimental observations on the progressional behavior of tie lines. The binodal predictions were
found very sensitive with respect to the model parameters, as expected in condensed phases. The general features of non-
istand type of termary LLE were excellently reproduced by the decorated-UNIQUAC.

Kev words: Decorated-UNIQUAC, LLE, Multicomponent, Multiphase, Equilibrium

INTRODUCTION

Multicomponent multiphase liquid-liquid equilibrium data are
of fundamental importance in the design and/or in the optimal
operation of chemical processes. However, in reality, the re-
liable experimental data themselves are not sufficient to be
used for the complete requirements of process engineering. A
variety of equilibrium models are frequently used to predict the
phase equilibria in wide range of process variables from these
limited reliable experimental data [Sandler, 1993; Prausnitz et
al.,, 1986; Modell and Reid, 1983; Francis, 1963; Rowlinson
and Swinton, 1959]. It is well-known, however, that they can-
not afford all kinds of phase diagrams and their applications
are also limited to some categories of phase behaviors [Mollerup,
1981; Van Kornynenberg and Scott, 1980; Furman and Grif-
fiths, 1978). These models are highly non-linear with respect to
the model parameters, and the sensitivities in the binodal pred-
ictions are very different according to the selected models. For
the model which is not sensitive to the model parameters, the
predicted phase behavior can be inconsistent with the ex-
perimental observations, in the overall sense, due to the used
model parameters are often located in the extended parameter
subspace, physically meaningless or forbidden [Wheeler and
Anderson, 1980; Anderson and Wheeler, 1978a; Mulholland
and Rehr, 1974]. If the model is too sensitive, its applications
may be limited because of the practical difficulty in the ex-
perimental data reduction to get the optimal model parameters
in numerical way [Kemeny et al., 1982; Prausnitz et al., 1980;
Varhegyl and Eon, 1977]. Various studies have been made to
develop the equilibrium models reproducing a variety of phase
behaviors including, in particular, the characteristic features of
the systems of concern, with proper sensitivity [Skjold-Jorgen-
sen et al, 198); Anderson and Wheeler, 1978b; Abrams and
Prausnitz, 1975]. Therefore, in the equilibrium simulation of a
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specific system, it is prerequisite to examine whether the
chosen proposed models can predict the phase equilibria of in-
terest with appropriate mode] parameters or not.

In the calculation of phase equilibria for non-ideal liquid mix-
tures at low pressure, highly non-linear activity models are of-
ten used to take account of the deviation from the ideality
[Sandler, 1993; Prausnitz et al., 1986; Modell and Reid, 1983;
Rowlinson and Swinton, 1959]. Most of the well-established ac-
tivity models are lattice-based assuming the analyticity of the
partition function and the additivity of the free energy, and
they are usually modified in minor, on the basis of their ori-
ginal mathematical structure, to enhance their predictability and
to control the sensitivity in predictions [Prausnitz et al., 1986;
Mollerup, 1981; Abrams and Prausnitz, 1975; Rowlinson and
Swinton, 1959]. Van Konnynenberg and Scott [198(}], examin-
ing the van der Waals model, successfully manipulated the vari-
ous types of phase diagrams, indicating that the mean field ap-
proximation of lattice model well represents the nature of the
statistics and the intermolecular forces in overall schemes ex-
cept those of the type VI, the closed-loop phase diagrams of bi-
nary mixtures, e.g., aqueous surfactant solutions [Lang and
Morgan, 1980] and pyridine derivative solutions [Kim and Kim,
1986].

UNIQUAC, one of the solution models, has been applied to
the predictions of phase equilibria, and the types of its predict-
able phase behavior are well-known [Prausnitz et al., 1980]. In
some cases, however, its applicability is inherently limited. In
the liquid-liquid equilibrium calculations, in spite of the ac-
curate reproduction of the experimental equilibrium data in some
simple systems governed by the classical interactions, UNI-
QUAC cannot predict complex phase behavior of the non-clas-
sical systems in which the formation of molecular structure can-
not be ignored, e.g., hydrogen bonding or chemical complexes
[Kim and Kim, 1986; Kim, 1985]. For these systems, many
models and methods for the phase equilibrium calculations
have been devised [Cheluget et al., 1993; Hino et al,, 1993; Hu
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et al,, 1991; Jung and Jhon, 1984; Goldstein, 1986, 1985; Gold-
stein and Walker, 1983; Vause and Walker, 1982; Anderson
and Wheeler, 1973a, 1978b]. All these works make use of ri-
gorous statistical mechanical calculation procedures which are
limited only to binary systems, and they are considered very
difficult to be transformed into corresponding solution models
like UNIQUAC. Although these statistical mechanical pro-
cedures can provide precise binodal structure numerically in
the critical region governed by the singular point, their equi-
librium predictions are restricted to the binary one or two phase
systems due to the complexity in the above transformations.
On the other hand, the UNIQUAC model, one of the promis-
ing sotution models, can be applied to the multicomponent mul-
tiphase systems in principle [Prausnitz et al., 1980; Abrams and
Prausnitz, 1975]. The decorated-UNIQUAC model {Kim et al,,
1989; Kim and Kim, 1988], developed by the authors, is ex-
pected to be able to predict the multicomponent multiphase li-
quid-liquid equilibria, because it is inherently one of the ac-
tivity models possessing the mathematical structure of UNI-
QUAC, even though it represents the orientational statistics in
the microscopic molecular world, e.g., the hydrogen bonding.
To the best of the authors' knowledge, there is no works for
the multicomponent multiphase equilibrium predictions of the
systems in which some kinds of molecular structure formation
are involved. The immiscibilily gap predicted by UNIQUAC
changes simply with temperature [Kim 1985; Skjold-J$rgensen
et al., 1980; Prausnitz et al., 1980]. However, it is naturally
considered that the decorated-UNIQUAC model, which success-
fuily reproduces the type VI phase behavior, guarantees much
more complicated and general temperature dependence of the
coexisting region than UNIQUAC [Kim, 1988]. As shown in
the Meijering's works [1950, 1951] of arbitrary expansions of
the isothermal regular ternary solution model, the phase beha-
vior in the multicomponent multiphase systems may exhibit to-
pologically various internal structures in phase space. In par-
ticular, unexpected internal phase structure, which is not found
in the constituting binary phase diagrams, may appear [Becker
and Richter, 1989; Wisniak, 1984; Robard and Patterson, 1977,
Zeman and Paterson, 1972; Meijering, 1950, 1951]). In the
course of developing the decorated-UNIQUAC model, authors
have performed not a few trial calculations for the model ter-
nary systems, for the model characterization, such as testing
the predictable types of liquid-liquid equilibria and the sen-
sitivity with respect to the model parameters, together with
comparing the equilibrium calculations by UNIQUAC. In this
paper, typical ternary predictions for some model systems con-
structed by the decorated-UNIQUAC model will be introduced,
and their distinguishing features will be compared with those
of the UNIQUAC model.

UNIQUAC MODEL FOR CONDENSED PHASES

The model of UNIQUAC is based on the concepts of vol-
ume fraction and the local compositions: it recognizes the
molecular geometric difference with their volume and surface
area [Prausnitz et al., 1986; Abrams and Prausnitz, 1975]. Mole-
cules are assumed as a polysegment, the linear chain of con-
stituting moieties, ignoring the connectivity. The molecular size
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and shape are characterized as each sum of the segment
volume and surface area which are proportional to the molec-
ular van der Waals volume and surface area, respectively. The
numerical values of these molecular parameters are the mul-
tiples of those of standard segments. The molecules are as-
sumed to exist in the state of non-uniform microscopic mixing.
The model equations can be derived, through the statistical mech-
anical procedure, from the lattice model incorporating the phy-
sicochemistry of UNIQUAC.

The first derivation of the highly non-linear expressions of
UNIQUAC for activity coefficients was performed with quasi-
chemical approximation for the partition function and the neg-
lect of the pressure-volume contribution [Abrams and Prausnitz,
1975]. However, convenient derivation is available using two-
fluid theory [Maurer and Prausnitz, 1978]. Applying the Wilson's
assumption [Wilson, 1964] to the molar excess internal energy,
Eqgs. (1)-(6) are obtained for the expressions of excess Gibbs
free energy change of mixing and activity coefficients, respec-
tively.
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The exactly derived, as above, original UNIQUAC equations
were not successful in the expected precise reproduction of the
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phase equilibria [Abrams and Prausnitz, 1975]. The introduc-
tion of the additional term including the third semi-adjustible
molecular parameter was recommended, and the UNIQUAC
model, in this extended form as shown in the Eq. (8), has been
widely applied to the calculations for a variety of mixtures
with improved accuracy [Prausnitz et al., 1980]. Equating the
third molecular parameter with the molecular surface area
parameter makes the extended UNIQUAC equations reduce to
the original ones. However, even with these modifications, it is
considered impossible to overcome the problem of limited ap-
plicability: the phase behavior observed in the polymer solu-
tions and of the type VI cannot be reproduced by the extended
UNIQUAC [Kim, 1985, 1988; Skjold-J¢rgensen et al., 1980,
Prausnitz et al., 1980].
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DECORATED-UNIQUAC MODEL

The transformations introducing new site between neighbor-
ing sites in lattice models result in new lattice-based models,
which are called by the decorated lattice models [Fisher, 1959].
These transformations are not restricted to the lattice models:
cell models can be modified to the corresponding decorated
ones with similar topological consideration [Wheeler and And-
erson, 1980; Anderson and Wheeler, 1979, 1978a, 1978b; Mul-
holland et al., 1975; Wheeler, 1975; Mulholland and Rehr,
1974; Zollweg and Mulholland, 1972; Mermin 1971; Widom,
1967]. In the decorated lattice models, two sets of sublattice
(sites) coexist, i.e., prirnary lattice (sites) of the original lattice,
and the secondary lattice (sites) of the decorated one [Fisher,
1957]. The statistical mechanical relations are well known in-
terrelating one lattice model and its decorated ones. Therefore,
the decorated lattice models can be inverse-transformed, with
the reduction of the laitice degrees of freedom by, e.g., renor-
malization transformations and/or the effective interactions
[McMahon et al., 198&; Goldstein, 1935, 1986; Burkhardt and
Van Leeuwen, 1982].

Because of the increased lattice degrees of freedom, the de-
corated lattice model can accommodate complicated physico-
chemical phenomena which cannot be simulated by the lattice
models. Furthermore, the inherent interactional symmetries of
the lattice models can be broken, by the difference in the coor-
dination numbers of the primary and secondary lattices of the
decorated lattice models, and therefore, they are able to repro-
duce the physical chemistry of asymmetric interactions found

in nature (Fisher, 1959].

By inserting the secondary lattice elements between the ncigh-
boring (primary) UNIQUAC lattice sites, the lattice for decora-
ted-UNIQUAC was constructed [Kim and Kim, 1988]. Orien-
tational interactions were permitted to the entities occupying
the decoratior cells, in addition to the classical non-directional
interactions. To make the combinatorics consistent, the entities
in the secondary decorated cells were assumed to be ghost
molecules, with the same characteristics of real molecules ex-
cept the mass. That is to say, they exert their influence over
the neighboring primary lattice cells just like ghost field which
cannot be counted [Burkhardt and Van Leeuwen, 1982; Rey-
nolds et al., 1977, 1978, 1980]. Physically, the effects of high-
er order interactions may be lumped into the decorated lattice
cell contributions [Elrod and Saykally, 1994; Reichl, 1980].
The renormalized primary interactions between the nearest neigh-
boring sites of the reduced UNIQUAC lattice are cetermined
by the parameters of secondary decorated lattice elements and
the original interactions {Kim and Kim, 1988; Burkhardt and
Van Leeuwen, 1982]. Lattice coordination was relaxed to that
of hyper-dimensionality for the proper balance of prediction
sensitivity of the decorated-UNIQUAC which is constructed
from the models of a different nature. The number of direc-
tionally active sites (or arrows) is different molecule bv molec-
ule [Barker and Fock, 1953; Barker, 1952]. However, it was
simplified that a molecular segment has one or two direc-
tionally active site(s), according to the molecular structure. The
directionality, , representing the number of possible orien-
tations for a directionally active site of segments, was assumed
to be proportional to q, and the reference value of w, was
parametrized to a constant of 9000. In case that there are two
directionally active sites for a segment, the number of possible
orientations of the second site is restrictec by the segment
geometry, the angle, y, between the sites, as shown in Fig. 1.
Interactions were classified to directional ones (E,) and non-
directional ones (e,;) according to their dependence on molec-
ular orientation. Eq. (10) shows the renormalization transfor-
mations between the specific UNIQUAC variables and the par-
tition functions for the primary bond of the decorated-UNI-
QUAC model [Kim and Kim, 1988].

g, =2t (10)
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Fig. 1. (a) Directionality of a molecular segment having only
one directionally active site; (b) directionalities of a
molecular segment having two directionally active sites.
The directionality of the second site, ®, is determined by
segment geometry, V.
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where, the partition functions for the primary bonds are given
by

Q;=Qi; +8Q;y; (1)

and [, the fugacity ratio satisfies the following nonlinear
equality:
3
¢ Wi | Qu
W, || Qx»

-1=0 (12)

where the total segment directionalities, W/'s are determined by
Eq. (13), depending on the number of directionally active site(s)
per segment of component i.

W
.2 2

W,=6,,0+8, (13)
The partition functions for decorated cells are represented by
the original interactions, as shown in Eq. (14) and Table 1.

Q=3 k. 0 exp] - e} (19

The activity coefficient expressions of the decorated-UNI-
QUAC model are not different from those of the UNIQUAC
model except the fact that the UNIQUAC variables, T,, are de-
termined by Eq. (19). This type of transformation is different,
in essence, from the arbitrary polynomial expansions of tem-
perature dependence. Physically, the transformations, Eq. (10),
are the mathematical mappings of the effects of multi-bodies
and the orientation of molecular segments in the decorated lat-
tice model onto the UNIQUAC model. The expressions in the
forms of the excess Gibbs free energy change of mixing and
the activity coefficients were already introduced in the Egs. (1),
(6), or (8), which are useful in equilibrium calculations.

LLE PREDICTIONS FOR MULTICOMPONENT
MULTIPHASE SYSTEMS

The calculations of multicomponent muitiphase liquid-liquid
equilibria are the procedures getting the physical solutions from
the simultaneous equations of the same fugacity values for each
component distributed in the coexisting phases [Sandler, 1993;
Modell and Reid, 1983]. In a numerical sense, these cal-
culations are very similar to the flash VLE calculations. The
convenient iteration variables are the equilibrium ratio for each
component and the phase split ratio of the mass in the feed
stream. The welt-known Newton-Raphson iteration, is applied,

Table 1. Degeneracies, g(k, 6), and interactional energies for the
decorated cell partition function, Qu, depending on the
configuration of a k-ghost molecular segment, o, in the
decorated cell
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usually in a modified form to accelerate the convergence, e.g.,
the Wegstein's acceleration [Wegstein, 1955]. This type of itera-
tion guarantees the fast convergence to the binodal composi-
tions except those under the influence of a critical (or plait)
point [Kim, 1985]. The subject of robust initial guess for the
equilibrium compositions is a matter worthwhile to be studied
extensively [Kwon and Park, 1995].

As mentioned above, UNIQUAC can predict only the LLE
behaviors of the simple systems exhibiting simple topological
coexistence plane in phase space. The calculated examples are
shown in Figs. 2 and 3 exhibiting the temperature dependence
of the ternary liquid-liquid equilibria predicted by the original
UNIQUAC [Egs. (1), (2)]. In Fig. 2, the phase diagrams of ben-
zene (component 1)-acetonitrile (component 2)-n-heptane (com-
ponent 3) at different temperatures are projected at the same

Benzene

(2) (3)
Acetonitrile n-Heptane

Fig. 2. Change of the liguid-liquid coexistence curves wrt. tem-
perature for the ternary system of benzene-acetonitrile-n-
heptane predicted with UNIQUAC.

2,2,4-trimethylpeniane
(1

(2) (3)

Furfurol — 298I5K Cyclohexane
————— 400K
— — 450K
— = 300K

Fig. 3. Change of the liquid-liquid coexistence curves wrt. tem-
perature for the ternary system of 2,2,4-trimethylpentane-
furfural-cyclohexane predicted with UNIQUAC.
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planar triangle. Fig. 3 shows the similar equilibrium calcul-
ations for the system of 2,2, 4-trimethylpentane (component 1)-
furfural (component 2)-cyclohexane (component 3). The molec-
ular and interactional parameters used in these calculations are
listed in Table 2. Just like the case of the van der Waals model
[Van Konnynenberg and Scott, 1980}, the UNIQUAC model
predicts only the phase behavior governed by the simple in-
teractions. As shown in Figs. 2 and 3, the UNIQUAC model
and the modified one reproduce only the phase behavior hav-
ing monotonic temperature dependence, i.e., the regional area
of partial miscibility increases or decreases monotonically with
the change of temperature. Furthermore, the predictability of
the UNIQUAC rmodel is topologically restricted to the simple
case of no cross-over of the coexistence curves projected onto
the isothermal plane in the phase space of temperature-com-

Table 2. Molecular and interactional parameters used in the
LLE calculations of Fig. 2 and 3.

Binary interaction parameters
Molecular parameters ry P ’
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position prism [Kim, 1988},

To the best of the authors' knowledge, there is no adequate
literature reporting the complicated change of the multicompo-
nent multiphase behavior with temperature for the systems in
which the effects of the molecular orientation become im-
portant. However, it is not difficult to analogize the whole ter-
nary phase behavior out of those of the constituting binary
pairs. To set up the prediction boundary of the decorated-UNI-
QUAC model, not a few multicomponent multiphase calcu-
lations were performed for the several assumed model systems.
The typical calculations are shown in Figs. 4, 5, and 6, for the
model ternary systems. In these figures, 2-3 binary pairs were
assumed to experience no directional interaction, and therefore
they exhibit classical type of binary T-x diagrams with no low-
er critical solution temperature. Component 1 was given two
directionally active sites per segment, in contrast to only one
active site per segment permitted to molecles 2 and 3. Figs. 4
to 6 show calculated phase envelopes which can be usually ob-
served in real ternary mixtures. For each model mixture, three
T-x diagrams of three binary pairs were drawn from a given

A, [K] set of interaction energies, {E, ¢;}, and the isothermal binodal
Fig. 2 i L 9 q/ 1\ 1 2 3 compositions were calculated at some system temperatures.
1 319 240 240 1 - 89.57 -135.93 The molecular and interactional parameters are listed in Table 3,
2 187 172 172 2 6028 - 37N together with the number of the directionally active sites per
3 517 440 440 3 24542 54579 - segment. The angle , was assumed to be that of the sp’ hybrid
Fig. 3 i r, Iy q’ 1NJ 1 2 3 orbitai, as in case of water. In the figures, the smooth and flex-
1 585 494 494 1 - 410.08 141.01 ible penetrations are observed from the binary phese boun-
2 317 248 248 2 498 - 41.17 daries toward the inner-prism phase space. Because of the poor
3 397 3.0t 301 3 112,66 354.83 - convergence in the vicinity of the plait points [Sadus, 1994;
A=Au,/R Prausnitz et al., 1980], the phase boundaries in the critical re-
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Fig. 4. Liquid-liquid phase diagrams constructed by decorated-UNIQUAC for a model ternary mixture {(d), (¢) and (f)} and its con-
stituting three binary pairs {(a), (b) and (c)} at different temperatures. Each immiscibility gap in ternary phase diagrams behave
independently wrt. temperature.

(e)

(f)
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Fig. 5. Liquid-liquid phase diagrams constructed by decorated-UNIQUAC for a model ternary mixture {(d), {(¢) and (f)} and its con-
stituting three binary pairs {(a), (b) and (c)} at different temperatures. Temperature change exhibits typical merging behavior of

the coexistence curves and progressional change of their tie lines.
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Fig. 6. Liquid-liquid phase diagrams censtructed by decorated-UNIQUAC for a model ternary mixture {(d), (¢} and ()} and its con-
stituting three binary pairs {(a), (b) and (c)} at different temperatures. Temperature change results in complex ternary phase
behavior involving three phase regions.

gions are the results of the spline interpolation. The location of of the interpolated binodul compositions and the extrapolated
the critical poinis is possible with the well-known combination diameler of the coexistence curves [Treybal et al., 1946: Hand,
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Table 3. Molecular and interactional parameters used in the LLE calculations of Fig. 4, 5 and 6

Directional interactions Nondirectional interactions

Molecular parameters

E, {k joule/mole]

e, [k joule/mole’

Fig. 4 i T, q q’ , il Y, i\j ] 2 3 i\J 1 2 3
1 1.00 2.00 2.00 9000 2 1.911 1 28.16 2397 2510 1 2.09 3.35 3.56
2 2.00 3.00 3.00 13500 1 2 - 0.00 0.00 2 - 1.26 4.18
3 3.00 4.00 4.00 18000 1 - 3 - - 0.00 3 - - 1.26

Fig. 5 i T, q, q/ o, n, L2 N 1 2 3 iNJ 1 2 3
1 1.00 2.00 2.00 9000 2 1.911 1 2816 2397  24.69 1 2.09 3.78 3.35
2 2.00 3.00 3.00 13500 1 - 2 - 0.00 0.00 2 - 1.26 4.39
3 3.00 4.00 4.00 18000 I - 3 - - 0.00 3 - - 1.26

Fig. 6 i r o 9 o oon o 0N 1 2 3N 2 3
1 1.00 2.00 2.00 9000 2 1.911 1 28.16 - 2397  24.69 1 2.09 3.78 3.56
2 2.00 3.00 3.00 13500 I - 2 - 0.00 0.00 2 - 1.26 4.39
3 3.00 4.00 4.00 18000 1 - 3 - - 0.00 3 - - 1.26

1930]. For all that, the predicted progressional trends of the tie
lines towards the plait points are in accordance with the ex-
perimental observations without inconsistency. Temperature ev-
olution of ternary phase envelopes is also consistent with the
closed-loops in binary T-x diagrams. As shown in Fig. 5, the
immiscibility regions can merge together at suitable conditions,
making the plait points vanish, as frequently observed in ex-
penimental works [Francis, 1963; Rowlinson and Swinton, 1959).
Particularly, in Fig. 6, three plait points disappear to generate a
triangular region where three phases coexist with the apex com-
positions of the triangle. In these trial calculations for the
characteristic test of the decorated-UNIQUAC model, the is-
land type of inner- prism phase structure [Becker and Richter,
1989; Wisniak, 1984; Robard and Patterson, 1977; Zeman and
Patterson, 1972; Meijering, 1950, 1951] and the phase diagrams
with solutropes {Francis, 1963] have not been observed in the
subspace of interactional parameters chosen. However. the pos-
sibility of predicting the island curves cannot be excluded, in
the sense of the physical chemistry of the island type of phase
behavior included in the decorated-UNIQUAC model.

As given in Table 3, the number of orientational active sites
of the segment is fixed consistently for each component and bi-
nary pairs constituting the system, and therefore, equations for
the calcnlations of the lattice partition functions can be chosen
with no ambiguity. It appears, as in Figs. 4 to 6, and Table 3,
that the decorated-UNIQUAC is a very sensitive model in the
LLE prediction with respect to the energy parameters used, in
comparison with other frequently used solution models, e.g.,
the models of UNIQUAC, NRTL, and Wilson [Abrams and
Prausnitz, 1975; Renon and Prausnitz, 1968; Wilson, 1964).
Even the small change of the interaction energies, either direc-
tional or non-directional, corresponding to the one to ten per-
cents of thermal mixing energy, makes drastic changes in the
phase behavior such as the phase boundaries and the number
of coexisting phases. Although similar behavior is often found
in the condensed phases [Hirschfelder et al., 1937], practical
difficulties on the convergence arise in the reduction procedure
of experimental data obtaining optimal interactional adjustables
for the decorated-UNIQUAC model. The strength of the hy-
drogen bonding in liquid phase is known to be in the range of

- 10~ - 30 kjoule/mole [Joesten and Schaad, 1974; Pimentel
and McClellan, 1960). It is expected that the decorated-UNI-
QUAC can successfully reproduce various more complicated
types of ternary phase behavior within the physicochemically
meaningful energy parameter subspace, just like the cases for
the binary systems [Kim and Kim, 1988§).

CONCLUSIONS

To examine the predictability for the multicomponent mul-
tiphase equilibria by the decorated-UNIQUAC, the comparative
LLE calculations of non-island types were performed for some
real and model ternary systems, after the brief illustration for
the physical chemistries on which the UNIQUAC and decora-
ted-UNIQUAC models are based. The characteristics of the
decorated-UNIQUAC model were also investigated. It was prov-
ed that the decorated-UNIQUAC model can construct the
overall phase structure in temperature-composition plase space
which cannot be reproduced by other solution models includ-
ing the (modified) UNIQUAC. The qualitative consistency was
also investigated in precise, comparing the predicied inner-
prism binodal structures and the merging behaviors accom-
panying the rearrangement of tie lines with the exoaerimental
LLE observations at low pressures. The appearance of three
phase domain in phase diagram resulted from the cxpansions
of the partially miscible areas, making the plait points vanish.
From these model calculations, we conclude the decorated-UNI-
QUAC model well-represents the general features found in the
phase diagrams of ternary liquid mixturcs.

Although the decorated-UNIQUAC model possesses the pre-
dictability for the multicomponent multiphase LLE within the
physicochemically meaningful range of the paramete- subspace
with high sensitivity, it scems to be worthwhile, for cngineer-
ing practice, developing the modified decorated-UNIQUAC
model in the direction of relieving the model sensitivity, as in
the case of UNIQUAC. The predictability for the island type of
isothermal ternary phase diagrams with this model is consi-
dered 10 be worthwhile to study hercafter for low molecular
and/or polymeric solutions. Authors prospect that some kind of
testable experimental equilibrium data will be available in near
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future, and then the experimental phase diagrams will be, at
least, fairly reconstructed with this decorated-UNIQUAC modetl
on the basis of this work.

NOMENCLATURE

A, :adjustable energy parameters in UNIQUAC, defined as

Au,/R [K]

¢, :non-directional interaction energy between segments i
and j [joule/mole]

E :interaction energy between segments [joule/mole]

E, :directional interaction energy between segments i and j
[joule/mole]

g :degeneracy [dimensionless]

Agh @ excess molar Gibbs free energy change of mixing [joule/
mole]

I : quantity defined by Eq. (7) [dimensionless]|

q. :molecular surface area parameter of UNIQUAC [dimen-
sionless]

q. :additional molecular parameter of UNIQUAC [dimensionless|

Q, : pattition function for primary bond connecting molecular
segments i and j [dimensionless]

Q,, :partition function for decorated ghost molecular segment
k between real segments i and j [dimensionless]

R :gas constant [joule/(mole - K)]

1, :molecular volume parameter of UNIQUAC [dimensionless]

T  :absolute temperature [K]

Au; : UNIQUAC interaction energy parameters [joule/mole]

W, :total segment directionality of component i [dimensionless]

x; :mole fraction of component i [dimensionless]

: coordination number of UNIQUAC lattice [dimensionless)

Greek Letters

Y, :activity coefficient of component i [dimensionless}

3, :the Kronecker delta (0 if i=]; 1 if i=j) [dimensionless]

£  :fugacity ratio [dimensionless]

n. :number of active sites in a segment of the component i
[dimensionless)

0. :surface area fraction of component i [dimensionless}

0/ : fractional parameter of component i corresponding to ad-
ditional molecular parameter g, [dimensionless]

o configuration identity variable of k-ghost molecular seg-

ment in the decorated cell {dimensionless}]
T; :variables of UNIQUAC defined by Egs. (2) and (3)

[dimensionless]

@, :volume fraction of component i [dimensionless]

v, :angle between the directionally active sites of the com-
ponent i [radian]

o, :segment directionality for the first active site of the com-
ponent i {dimensionless}]

w :segment directionality for the second active site of the

component i [dimensionless]
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