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Abstract- To investigate the applicability of the decorated-UNIQUAC model for multicomponent mulfiphase liquid 
mi• equilibrium calculations were carried out for a variety of model ternary systems, and some typical predictions 
were introduced. The predicted phase behavior was less limited and more complicated than that of UNIQUAC without 
disagreement with experimental observations on the progressional behavior of tie lines. The binodal predictions were 
found very sensitive with respect to the model parameters, as expected in condensed phases. The general features of non- 
island type of ternary LLE were excellently reproduced by the decorated-UNIQUAC. 
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INTRODUCTION 

Multicomponent multiphase liquid-liquid equilibrium data are 
of fundamental importance in the design and/or in the optimal 
operation of chemical processes. However, in reality, the re- 
liable experimental data themselves are not sufficient to be 
used for the complete requirements of process engineering. A 
variety of equilibrium models are frequently used to predict the 
phase equilibria in wide range of process variables from these 
limited reliable experimental data [Sandler, 1993; Prausnitz et 
al., 1986; Modell and Reid, 1983; Francis, 1963; Rowlinson 
and Swinton, 1959]. It is well-known, however, that they can- 
not afford all kinds of phase diagrams and their applications 
are also limited to some categories of phase behaviors [Mollerup, 
1981; Van Kornynenberg and Scott, 1980; Furman and Grif- 
fiths, 1978]. q~ese models are highly non-linear with respect to 
the model parameters, and the sensitivities in the binodal pred- 
ictions are very different according to the selected models. For 
the model which is not sensitive to the model parameters, the 
predicted phase behavior can be inconsistent with the ex- 
perimental observations, in the overall sense, due to the used 
model parameters are often located in the extended parameter 
subspace, physically meaningless or forbidden [Wheeler anti 
Anderson, 1980; Anderson and Wheeler, 1978a; Mulholland 
and Rehr, 1974]. If the model is too sensitive, its applications 
may be limited because of the practical difficulty in the ex- 
perimental data reduction to get the optimal model parameters 
in numerical way [Kemeny et al., 1982; Prausnitz et al., 1980; 
Varhegyl and [:,on, 1977]. Various studies have been made to 
develop the equilibrium models reproducing a variety of phase 
behaviors including, in particular, the characteristic features of 
the systems of concern, with proper sensitivity [Skjold-J~rgen- 
sen et al., 1980; Anderson and Wheeler, 1978b; Abrams and 
Prausnitz, 1975]. Therefore, in the equilibrium simulation of a 
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specific system, it is prerequisite to examine whether the 
chosen proposed models can predict the phase equilibria of in- 
terest with appropriate model parameters or not. 

In the calculation of phase equilibria for nc, n-ideal liquid mix- 
tures at low pressure, highly non-linear activity models are of- 
ten used to take account of the deviation from t~ae ideality 
[Sandier, 1993; Prausnitz et al., 1986; Modell and Reid, 1983; 
Rowlinson and Swinton, 1959]. Most of the well-established ac- 
tivity models are lattice-based assuming the analyticity of the 
partition function and the additivity of the free energy, and 
they are usually modified in minor, on the basis of their ori- 
ginal mathematical structure, to enhance their predictability and 
to control the sensitivity in predictions [Pra~,snitz et al., 1986; 
Mollerup, 1981; Abrams and Prausnitz, 1975; Rowlinson and 
Swinton, 1959]. Van Konnynenbe:rg and Scott [1980], examin- 
ing the van tier Waals model, successfully manipulated the vari- 
ous types of phase diagrams, indicating that the mean field ap- 
proximation of lattice model well represents the nature of the 
statistics and the intermolecular fi)rces in overall schemes ex- 
cept those of the type VI, the closed-loop phase diagrams of bi- 
nary mixtures, e.g., aqueous surfactant solutions [Lang and 
Morgan, 1980] and pyridine derivative solutions [Kim and Kim, 
1986]. 

UNIQUAC, one of the solution models, has been applied to 
the predictions of phase equilibria., and the types of its predict- 
able phase behavior are well-known [Prausnitz et al., 1980]. In 
some cases, however, its applicability is inherently limited. In 
the liquid-liquid equilibrium calculations, in spite of the ac- 
curate reproduction of the experimental equilibrium data in some 
simple systems governed by the classical interactions, UNI- 
QUAC cannot predict complex phase behavior of the non-clas- 
sical systems in which the formation of molecular structure can- 
not be ignored, e.g., hydrogen bonding or c, hemical complexes 
[Kim and Kim, 1986; Kim, 1985]. For these systems, many 
models and methods for the phase equilibrium ,zalculations 
have been devised [Cheluget et al., 1993; Hino et al, 1993; Hu 
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et al., 1991; Jung and Jhon, 1984; Goldstein, 1986, 1985; Gold- 
stein and Walker, 1983; Vause and Walker, 1982; Anderson 
and Wheeler, 1978a, 1978b]. All these works make use of ri- 
gorous statistical mechanical calculation procedures which are 
limited on]y to binary systems, and they are considered very 
difficult to be transformed into corresponding solution models 
like UNIQUAC. Although these statistical mechanical pro- 
cedures can provide precise binodal structure numerically in 
the critical region governed by the singular point, their equi- 
librium predictions are restricted to the binary one or two phase 
systems due to the complexity in the above transfl~rmations. 
On the other hand, the UNIQUAC model, one of the promis- 
ing solution models, can be applied to the multicomponent mul- 
tiphase systems in principle [Prausnitz et al., 1980; Abrams and 
Prausnitz, 1975]. The decorated-UNIQUAC model [Kim et al., 
1989; Kim and Kim, 1988], developed by the authors, is ex- 
pected to be able to predict the multicomponent multiphase li- 
quid-liquid equilibria, because it is inherently one of the ac- 
tivity models possessing the mathematical structure of UNI- 
QUAC, even though it represents the orientational statistics in 
the microscopic molecular world, e.g., the hydrogen bonding. 
To the best of the authors' knowledge, there is no works for 
the multicomponent multiphase equilibrium predictions of the 
systems in which some kinds of molecular structure formation 
are involved. The immiscibilily gap predicted by UNIQUAC 
changes simply with temperature [Kim 1985; Skjold-J0rgensen 
et al., 1980; Prausnitz et al., 1980]. However, it is naturally 
considered that the decorated-UNIQUAC model, which success- 
fully reproduces the type VI phase behavior, guarantees much 
more complicated and general temperature dependence of the 
coexisting region than UNIQUAC [Kim, 1988]. As shown in 
the Meijering's works [1950, 1951] of arbitrary expansions of 
the isothermal regular ternary solution model, the phase beha- 
vior in the multicomponent multiphase systems may exhibit to- 
pologically various internal structures in phase space. In par- 
ticular, unexpected internal phase structure, which is not found 
in the constituting binary phase diagrams, may appear [Becker 
and Richter, 1989; Wisniak, 1984; Robard and Patterson, 1977; 
Zeman and Patterson, 1972; Meijering, 1950, 1951]. In the 
course of developing the decorated-UNlQUAC model, authors 
have performed not a few trial calculations for the model ter- 
nat 3, systems, fbr the model characterization, such as testing 
the predictable types of liquid-liquid equilibria and the sen- 
sitivity with respect to the model parameters, together with 
comparing the equilibrium calculations by UNIQUAC. In this 
paper, typical ternary predictions for some model systems con- 
structed by the decorated-UNIQUAC model will be introduced, 
and their distinguishing features will be compared with those 
of the UNIQUAC model. 

UNIQUAC MODEL FOR CONDENSED PHASES 

The model of UNIQUAC is based on the concepts of vol- 
ume fraction and the local compositions: it recognizes the 
molecular geometric difference with their volume and surface 
area [Prausnitz et al., 1986; Abrams and Prausnitz, 1975]. Mole- 
cules are assumed as a polysegment, the linear chain of con- 
stituting moieties, ignoring the connectivity. The molecular size 
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and shape are characterized as each sum of the segment 
volume and surface area which are proportional to the molec- 
ular van der Waals volume and surface area, respectively. The 
numerical values of these molecular parameters are the mul- 
tiples of those of standard segments. The molecules are as- 
sumed to exist in the state of non-uniform microscopic mixing. 
The model equations can be derived, through the statistical mech- 
anical procedure, from the lattice model incorporating the phy- 
sicochemistry of UNIQUAC. 

The first derivation of the highly non-linear expressions of 
UNIQUAC for activity coefficients was performed with quasi- 
chemical approximation for the partition function and the neg- 
lect of the pressure-volume contribution [Abrams and Prausnitz, 
1975]. However, convenient derivation is available using two- 
fluid theory [Maurer and Prausnitz, 1978]. Applying the Wilson's 
assumption [Wilson, 1964] to the molar excess internal energy, 
Eqs. (1)-(6) are obtained for the expressions of excess Gibbs 
free energy change of mixing and activity coefficients, respec- 
tively. 

+x'n/< 
+..'nI< / 
-x2q 2 ln(02 + 01r12 ) (1) 
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0j + 0, r,j (6) 

where, 

(i, j)=(1, 2) or (2, 1) 

and 

Z 
lk = 2 (rk -ck)- ( rk  - 1) (k=l, 2) (7) 

The exactly derived, as above, original UNIQUAC equations 
were not successful in the expected precise reproduction of the 
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phase equilibria [Abrams and Prausnitz, 1975]. The introduc- 
tion of the additional term including the third semi-adjustible 
molecular parameter was recommended, and the UNIQUAC 
model, in this extended form as shown in the Eq. (8), has been 
widely applied to the calculations for a variety of mixtures 
with improved accuracy [Prausnitz et al., 1980]. Equating the 
third molecular parameter with the molecular surface area 
parameter makes the extended UNIQUAC equations reduce to 
the original ones. However, even with these modifications, it is 
considered impossible lo overcome the problem of limited ap- 
plicability: the phase behavior observed in the polymer solu- 
tions and of the type VI cannot be reproduced by the extended 
UNIQUAC [Kim, 1985, 1988; Skjold-Jdprgensen et al., 1980, 
Prausnitz et al., 1980]. 

) I ) I n ~ : l n ~ '  + ( Z x , .  :~2 q ' l n O '  +~J  l ' - - C / J  

- q l '  In(O, ~ +Oj zj,)+O; q~ 

"rj, r,j 
O,'+ Oj' r~, oj' + 0~'r,  

(8) 

where, 

(i, j )= ( l ,  2) or (2, 1) 

and 
r 

0 , '  -- x iq i  
Xlq 1' + x z q  2' 

(9) 

DECORATED-UNIQUAC MODEL 

The transformations introducing new site between neighbor- 
ing sites in lattice models result in new lattice-based models, 
which are called by the decorated lattice models [Fisher, 1959]. 
These transformations are not restricted to the lattice models: 
cell models can be modified to the corresponding decorated 
ones with similar topological consideration [Wheeler and And- 
erson, 1980; Anderson and Wheeler, 1979, 1978a, 1978b; Mul- 
holland et al., 1975; Wheeler, 1975; Mulholland and Rehr, 
1974; Zollweg and Mulholland, 1972; Mermin 1971; Widom, 
1967]. In the decorated lattice models, two sets of sublattice 
(sites) coexist, i.e., priraary lattice (sites) of the original lattice, 
and the secondary lattice (sites) of the decorated one [Fisher, 
1957]. The statistical mechanical relations are well known in- 
terrelating one lattice model and its decorated ones. Therefore, 
the decorated lattice models can be inverse-transformed, with 
the reduction of the lattice degrees of freedom by, e.g., renor- 
malization transformations and/or the effective interactions 
[McMahon ct al., 1988;; Goldstein, 1985, 1986; Burkhardt and 
Van Leeuwen, 1982]. 

Because of the increased lattice degrees of freedom, the de- 
corated lattice model can accommodate complicated physico- 
chemical phenomena which cannot be simulated by the lattice 
models. Furthermore, lhe inherent interactional symmetries of 
the lattice models can be broken, by the difference in the coor- 
dination numbers of the primary and secondary lattices of the 
decorated lattice models, and therefore, they are able to repro- 
duce the physical chemistry of asymmetric interactions found 

in nature [Fisher, 1959]. 
By inserting the secondary lattice elements between the neigh- 

boring (primary) UN1QUAC lattice sites, the lattice for decora- 
ted-UN1QUAC was constructed [Kim and Kim, 1988]. Orien- 
tational interactions were permitted to the ,entities occupying 
the decoratior cells, in addition to the classical non-directional 
interactions. To make the combinatorics consistent, the entities 
in the secondary decorated cells were assumed to be ghost 
molecules, with the same characteristics of real molecules ex- 
cept the mass. That is to say, they exert their influence over 
the neighboring primary lattice cells just like ghost f~eld which 
cannot be counted [Burkhardt and Van Leeuwen, 1982; Rey- 
nolds et al., 1977, 1978, 1980]. Physically, the effecls of high- 
er order interactions may be lumped into the decorated lattice 
cell contributions [Elrod and Saykally, 1994; Reichl, 1980]. 
The renormalized primary interactions between the nearest neigh- 
boring sites of the reduced UNIQUAC lattice are cetermined 
by the parameters of secondary decorated lattice elements and 
the original interactions [Kim and Kim, 1988; Burkhardt and 
Van Leeuwen, 1982]. Lattice coordination was relaxed to that 
of hyper-dimensionality for the proper balance of prediction 
sensitivity of the decorated-UNIQUAC which is constructed 
from the models of a different nature. The number of direc- 
tionally active sites (or arrows) is different rrolecule by molec- 
ule [Barker and Fock, 1953; Barker, 1952]. However, it was 
simplified that a molecular segment has one or two direc- 
tionally active site(s), according to the molecular structure. The 
directionality, co,, representing the number of possible orien- 
tations for a directionally active site of segments, was assumed 
to be proportional to q,, and the reference value of (o, was 
parametrized to a constant of 9000. In case that there are two 
directionally active sites for a segment, the r~umber of possible 
orientations of the second site is restricted by the segment 
geometry, the angle, "q,, between the sites, a,; shown in Fig. 1. 
Interactions were classified to directional ones (E,,) and non- 
directional ones (e,~) according to their dependence ~)n molec- 
ular orientation. Eq. (10) shows the renormalization transfor- 
mations between the specific UN1QUAC variables and the par- 
tition functions for the primary bond of the decorated-UNI- 
QUAC model [Kim and Kim, 1988]. 

@ 
JJ (10) r , j -  Qu 

(a) (b) 
Fig. 1. (a) Directionality of a molecular segment having only 

one directionally active site; (b) directionalities of a 
molecular segment having two directionally active sites. 
The directionality of the second site, 03," is determined by 
segment geometry, %. 
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where, the partition functions for the primary bonds are given 
by 

Q# = Q, 2j + (Qi~j (11) 

and ~, the fugacity ratio satisfies the following nonlinear 
equality: 

IWl / (Q~L]3-1=0 (12) 

where the total segment directionalities, W,'s are determined by 
Eq. (13), depending on the number of directionally active site(s) 
per segment of component i. 

m~" (13) W, = 6,7.1 to, + 6,~ i.2 2 

The partition functions for decorated cells are represented by 
the original interactions, as shown in Eq. (14) and Table 1'. 

E(k, m~ (14) 
QaJ=og(k'~ - RT J 

The activity coefficient expressions of the decorated-UNl- 
QUAC model are not different from those of the UNIQUAC 
model except the fact that the UNIQUAC variables, xv, are de- 
termined by Eq. (19). This type of transformation is different, 
in essence, from the arbitrary polynomial expansions of tem- 
perature dependence. Physically, the transformations, Eq. (10), 
are the mathematical mappings of the effects of multi-bodies 
and the orientation of molecular segments in the decorated lat- 
tice model onto the UNIQUAC model. The expressions in the 
forms of the excess Gibbs free energy change of mixing and 
the activity coefficients were already introduced in the Eqs. (1), 
(6), or (8), which are useful in equilibrium calculations. 

LLE PREDICTIONS FOR MULTICOMPONENT 
MULTIPHASE SYSTEMS 

The calculations of multicomponent multiphase liquid-liquid 
equilibria are the procedures getting the physical solutions from 
the simultaneous equations of the same fugacity values for each 
component distributed in the coexisting phases [Sandier, 1993; 
Modell and Reid, 1983]. In a numerical sense, these cal- 
culations are very similar to the flash VLE calculations. The 
convenient iterati,an variables are the equilibrium ratio for each 
component and the phase split ratio of the mass in the feed 
stream. The well-known Newton-Raphson iteration, is applied, 

Table 1. Degeneracies, g(k, if), and interactional energies for the 
decorated cell partition function, Q~, depending on the 
configuration of a k-ghost molecular segment, if, in the 
decorated cell 

t~ g(k, o) E(k, o) 

i) 6.,,2 E~+Ek~+e~i+% 
ii) 6,~k.2 (a,~' - ] ) + 6,~,.1 E~+e,,+% 
iii) 6,7k. 2 (o~ - 1 )+ 6,,.1 Ekj+ek,+% 
iv) 60k.2 {(% o~/2)-- 2(0~ - 1)- 1 } + S,,a (W, - l) e~,+% 

o~ = m-@k ~ "sintr k 
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usually in a modified form to accelerate the convergence, e.g., 
the Wegstein's acceleration [Wegstein, 1955]. This type of itera- 
tion guarantees the fast convergence to the binodal composi- 
tions except those under the influence of a critical (or plait) 
point [Kim, 1985]. The subject of robust initial guess for the 
equilibrium compositions is a matter worthwhile to be studied 
extensively [Kwon and Park, 1995]. 

As mentioned above, UNIQUAC can predict only the LLE 
behaviors of the simple systems exhibiting simple topological 
coexistence plane in phase space. The calculated examples are 
shown in Figs. 2 and 3 exhibiting the temperature dependence 
of the ternary liquid-liquid equilibria predicted by the original 
UNIQUAC [Eqs. (1), (2)]. In Fig. 2, the phase diagrams of ben- 
zene (component 1)-acetonitrile (component 2)-n-heptane (com- 
ponent 3) at different temperatures are projected at the same 

Benzene 
(I) 

(2) (3) 
A c e t o n i t r i l e  n - H e p t o n e  

Fig. 2. Change of the liquid-liquid coexistence curves wrt. tem- 
perature for the ternary system of benzene-acetonitrile-n- 
heptane predicted with UNIQUAC. 

2 , 2 , 4 -  tr imet hylpent one 

(I) 

(2) (3) 
Furfurol - -  29815K Cyclohexone 

. . . . .  4 0 0 K  

. . . .  450K 

. . . .  5 0 0 K  

Fig. 3. Change of the liquid-liquid coexistence curves wrt. tem- 
perature for the ternary system of 2,2,4-trimethylpentane- 
furfural-eyclohexane predicted with UN[QUAC. 
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planar triangle. Fig. 3 shows the similar equilibrium calcul- 
ations for the sy,;tem of 2,2,4-trimethylpentane (component l)-  
furfural (component 2)-cyclohexane (component 3). The molec- 
ular and interactional parameters used in these calculations are 
listed in Table 2. Just like the case of the van der Waals model 
[Van Konnynenberg and Scott, 1980], the UNIQUAC model 
predicts only the phase behavior governed by the simple in- 
teractions. As shown in Figs. 2 and 3, the UNIQUAC model 
and the modified one reproduce only the phase behavior hav- 
ing monotonic temperature dependence, i.e., the regional area 
of partial miscibility increases or decreases monotonically with 
the change of temperature. Furthermore, the predictability of 
the UNIQUAC model is topologically restricted to the simple 
case of no cross-over of the coexistence curves projected onto 
the isothermal plane in the phase space of temperature-corn- 

Table 2. Molecular and interactionai parameters used in the 
LLE calculations of Fig. 2 and 3. 

Molecular parameters 
Binary interaction parameter, 

A 0 [K] 

Fig. 2 i r, q, q,' i'x'~ 1 2 3 

1 3.19 2.40 2.40 1 89.57 - 135.93 
2 1.87 1.72 1.72 2 60.28 23.71 
3 5.1;' 4.40 4.40 3 245.42 545.79 

Fig. 3 i r, q, q,' i ~  1 2 3 

1 5.85; 4.94 4.94 1 410.08 141.01 
2 3.17 2.48 2.48 2 4.98 41.17 
3 3.97 3.01 3.01 3 112.66 354.83 

A,j=AuffR 

position prism [Kim, 1988]. 
To the best of the authors' knowledge, there is no adequate 

literature reporting the complicated change of the multicompo- 
nent multiphase behavior with temperature fi.~r the systems in 
which the effects of the molecular orientation become im- 
portanL However, it is not difficult to analogize the whole ter- 
nary phase behavior out of those of the constituting binary 
pairs. To set up the prediction boundary of the decorated-UNl- 
QUAC model, not a few multicomponent multiphase calcu- 
lations were performed for the several assumed mode] systems. 
The typical calculations are shown in Figs. 4, 5, and 6, for the 
model ternary systems. In these figures, 2-3 binary Fairs were 
assumed to experience no directional interaction, and therefore 
they exhibit classical type of binary T-x diagrams with no low- 
er critical solution temperature. Component 1 was given two 
directionally active sites per segment, in contrast to only one 
active site per segment permitted to molecles 2 and 3. Figs. 4 
to 6 show calculated phase envelopes which can be usually ob- 
served in real ternary mixtures. For each model mixture, three 
T-x diagrams of three binary pairs were drawn from a given 
set of interaction energies, {E,, %}, and the isothermal binodal 
compositions were calculated at some system temperatures. 
The molecular and interactional parameters are listed in Table 3, 
together with the number of the directionally active sites per 
segment. The angle ~g, was assumed to be that of the ,sp 3 hybrid 
orbital, as in case of water. In the figures, the smooth and flex- 
ible penetrations are observed from the binary phase boun- 
daries toward the inner-prism phase space. Because of the poor 
convergence in the vicinity of the plait points [Sadus, 1994; 
Prausnitz et al., 1980], the phase boundaries in the critical re- 

5O0 
, , e  

400 
UA 

~oo 

3 : 2 0 0  

I-- 
I 00  ' ' ' " ' . . . .  

o . o  o , 5  I .O 

MOLE FRACTION OF I 

[I + 2] 

( i )  

5 0 0  

'-~'~ 4 0 0  [ l + ~  ~ ) 

3 0 0  
r~ 
ILl 

2 0 0  
p- 

l O C  . . . . .  ' . . . .  
o . o  o . 5  I.O 

MOLE FRACTION OF I 

50r 
3 ~  

40( 

3 0 C  
r~ 
W 
~: 2 0 0  
LU 
I-- 

I00 ~ '  ' '  . . . .  
o.o 0.5 (o  

MOLE FRACTION OF 2 

(o) (b) (c) 
I 

2 3 

[ 2+3 ]  /f- "-\ 

I I 

2 3 2 3 

(d) (e) (f) 
Fig. 4. Liquid-liquid phase diagrams constructed by decorated-UNIQUAC for a model ternary mixture {(d), (e) and (f)} and its con- 

stituting three binary pairs {(a), (b) and (c)} at different temperatures. Each immiscibility gap in ternary phase diagrams behave 
independently wrt. temperature. 
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Lu 4 0 0  
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n 
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0.0 0 . 5  .0  
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(a) 
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(d) 
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Lu 4 0 0  
of 

3 0 0  
cc 
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2 0 0  
LU 

[ I  + 3 ] / . . ~ . -  

t 0 0  . . . .  ~ . . . .  
o .0  0 5  I.O 

MOLE FRACTION OF I 

(b) 
I 

2 3 

500 

LU 4 0 0  

3 0 0  
,Y 

200 
LU 

I 0 0  . . . .  ' ' ' ' ' 
0 . 0  0 .5  1.0 

MOLE FRACTION OF 2 

-\ 

(c) 
I 

2 3 

(e) (f) 
Fig. 5. Liquid-liquid phase diagrams constructed by decorated-UNIQUAC for a model ternary mixture {(d), (e) and (f)} and its con- 

stituting three binary pairs {(a), (b) and (c)} at different temperatures. Temperature change exhibits typical merging behavior of 
the coexistence curves and progressional change of their tie lines. 

500 

4 0 0  L~ 

3 0 0  
n- 
lad 

W 

I o o  
0 0 0 . 5  .0 

MOLE FRACTION OF 

500 

W 4 0 0  
c3~ 

3 0 0  

UJ 

2 0 0  
L~J 
I-- 

D+~j" ...... \ 
- r/ 

I 0 0  . . . .  t . . . .  
0.o 0 5  I.o 

MOLE FRACTION OF I 

500 

LU 400 

.~ 3 0 0  

LLJ 
2 0 0  

W 
F- 

i? 

tO0 . . . .  ' . . . .  

O0 0.5 0 

MOLE FRACTION OF 2 

(a) (b) (c) 
I I I 

2 3 2 3 2 3 

(d) (e) (f) 
Fig. 6. Liquid-liquid phase diagrams constructed by decorated-UNIQUAC for a model ternary mixture {(d), (e) and (f)} and its con- 

stituting three binary pairs {(a), (b) and (c)} at different temperatures. Temperature change results in complex ternary phase 
behavior involving three phase regions. 

gions are the results of the spline interpolation. The location of 
the critical points is possible with the well-known combination 
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of the interpolated binodal compositions and the extrapolated 
diameter of the coexistence curves [Treybal ,_q al., 1046: Hand, 
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Table 3. Molecular and interactionai parameters used in the LLE calculations of Fig. 4, 5 and 6 
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Directional interactions Nondirectional interactions 
Molecular parameters E, [k joule/mole] % [k joule/mole! 

I=ig. 4 i r, q, q," tO, rl, ~/, ix'~ I 2 3 i~j 1 2 3 

l ,.00 ,.00 ,.00 +00,> , ,.+,, , ,,.,+ ,3.+, ,,.,, , ,.0+ 3.,, 

, ,.I,o 3.o+ .,.00 ,.,0,) , _, 0.00 0.00, ,.,, 

, 3.0+ 4.00 ,.00 ,+000 , ., 0.<,0 , 

Fig. 5 i r, q, q," 60, rl, XlL ix'x~ 1 2 3 i ~ j  1 2 3 

1 1.00 2.00 2,00 9000 2 1.911 1 28.16 23.97 24.69 1 2.09 3.78 3.35 
2 2.00 3.00 3.00 13500 1 2 0.00 0.00 2 1.26 4.39 
3 3.00 4.00 4,00 18000 1 3 0.00 3 1.26 

Fig. 6 i r q, q," (o, rl, ~, iX, x j 1 2 3 iN',,xj I 2 3 

1 1.00 2.00 2.(10 9000 2 1.911 1 28.16 23.97 24.69 l 2.09 3.78 3.56 
2 2.00 3.1/11 3.01} 13500 I 2 0.00 0.00 2 1.26 4.39 
3 3.00 4.00 4.110 18000 I 3 0.00 3 1.26 

19301 . For all that, the predicted progressional trends of the tie 
lines towards the plait points are in accordance with the ex- 
perimental observations without inconsistency. Temperature ev- 
olution of ternary phase envelopes is also consistent with the 
closed-loops in binary T-x diagrams. As shown in Fig. 5, the 
immiscibility regions can merge together at suitable conditions, 
making the plait points vanish, as frequently observed in ex- 
perimental works [Francis, 1963; Rowlinson and Swinton, 1059]. 
Particularly, in Fig. 6, three plait points disappear to generate a 
triangular region where three phases coexist with the apex com- 
positions of the triangle. In these trial calculations for the 
characteristic tesl of the decorated-UNIQUAC model, the is- 
land type of inner- prism phase structure [Becker and Richter, 
1989; Wisniak, 1984; Robard and Patterson, 1977; Zeman and 
Patterson, 1972; Meijeriag, 1950, 1951] and the phase diagrams 
with solutropes ]Francis, 1963] have not been obse~'ed in the 
subspace of interactional parameters chosen. However. the pos- 
sibility of predicting the island curves cannot be excluded, in 
the sense of the physical chemistry of the island type of phase 
behavior included in the decorated-UNIQUAC model. 

As given in Table 3, the number of oricntational active sites 
of the segment i'; fixed consistently for each component and bi- 
nary pairs constituting the system, and therefore, equations for 
the calculations of the lattice partition functions can be chosen 
with no ambiguity. It appears, as in Figs. 4 to 6, and Table 3, 
that the decorated-UNIQUAC is a very sensitive model in the 
LLE prediction with respect to the energy parameters used, in 
comparison with other frequently used solution models, e.g., 
the models of UNIQUAC, NRTL, and Wilson [Abrams and 
Prausnitz, 1975; Renon and Prausnitz, 1968; Wilson, 1964]. 
Even the small change of the interaction energies, either direc- 
tional or non-directional, corresponding to the one to ten per-- 
cents of thermaJ mixing energy, makes drastic changes in the 
phase behavior such as the phase boundaries and the number 
of coexisting phases. Although similar behavior is often found 
in the condensed phases [Hirschfelder et al., 1937], practical 
difficulties on the convergence arise in the reduction procedure 
of experimental data obtaining optimal interactional adjustables 
for the decorated-UNIQUAC model. The strength of the hy.- 
drogen bonding in liquid phase is known to be in the range of 

10- 30 kjoule/mole [Joesten and Schaad, 1974; Pimentel 
and McClellan, 1960]. It is expected that the decorated-UN1- 
QUAC can successfully reproduce various more complicated 
types of ternary phase behavior within the pbysicochemically 
meaningful energy parameter subspace, just like the cases for 
the binary systems [Kim and Kim, 1988]. 

CONCLUSIONS 

To examine the predictability for the muhicomponent mul- 
tiphase equilibria by the decorated-UNIQUAC, the comparative 
LLE calculations of non-island types were performed for some 
real and model ternary systems, after the brief illustration for 
the physical chemistries on which the UNIQUAC and ctecora- 
ted-UNIQUAC models are based. The characteristi,zs of the 
decoraled+UNIQUAC model were also investigated. It was prov- 
ed that the decorated-UNIQUAC model can con.~truct the 
overall phase structure in lemperature-compo.'dtion pl'ase space 
which cannot be reproduced by other solution models includ- 
ing the (modified) UNIQUAC+ The qualitative consistency was 
also investigated in precise, comparing the predic;ed inner- 
prism binoda[ structures and the merging bchaviors accom- 
panying the rearrangement of tie lines with the ex:)erimcntal 
LLE observations at low pressures. The appearance of three 
phase domain in phase diagram resulted from the t:xpansions 
of the partially miscible areas, making the plait points vanish. 
From fllesc model calculations, we conclude the decoratcd-UNI- 
QUA(" model well-represents the ~,eneral features found in the 
phase diagrams of ternary liquid mixtures. 

Although the decorated-UNlQUA(" model possesses the pre- 
dictability for the multicomponent multiphase LLE within the 
physicochemically meaningful range of the paramete- subspace 
with high sensitivity, it seems to be worthwhile, fm engineer- 
ing practice, developing the modified decorated-UNIQUAC 
model in the direction of relieving, the modt:l sensitivit.',, as in 
the case of UNIQUAC. The predictability for the island type of 
isothermal ternary phase diagrams with this model is consi- 
dered to be worthwhile to study hereafter for low molecular 
and/or polymeric solutions. Authors prospect that some kind of 
testable experimental equilibrium data will be available in near 
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future, and then the experimental phase diagrams will be, at 
least, fairly reconstructed with this decorated-UNIQUAC model 
on the basis of this work. 

NOMENCLATURE 

& 

e~ 

E 
E~ 

g 
~g~ 

q, 

qf  
Q,, 

R 
r, 

T 
Au,~ 
W, 
Xi 

Z 

adjustable energy parameters in UNIQUAC, defined as 
Au,,/R [K} 
non-directional interaction energy between segments i 
and j [joule/mole] 
interaction energy between segments [joule/mole] 
directional interaction energy between segments i and j 
[joule/mole] 
degeneracy ]dimensionless] 
excess molar Gibbs free energy change of mixing [joule/ 
mole[ 
quantity defined by Eq. (7) [dimensionless] 

: molecular surface area parameter of UNIQUAC [dimen- 
sionless] 

: additional molecular parameter of UNIQUAC [dimensionless] 
: partition function for primary bond connecting molecular 
segments i and j [dimensionless] 

: partition tkmction for decorated ghost molecular segment 
k between real segments i and j [dimensionless] 

: gas constant [joule/(mole. K)] 
: molecular volume parameter of UNIQUAC [dimensionless] 
: absolute temperature [K] 
: UNIQUAC interaction energy parameters [jonle/mole] 
: total segment directionality of component i [dimensionless] 
: mole fraction of component i [dimensionless] 
: coordination number of UNIQUAC lattice [dimensionless] 

Greek Letters 
y. : activity coefficient of component i [dimensionless] 
8,: : the Kronecker delta (0 if it:j;  1 if i=j) [dimensionless] 

: fugacity ratio [dimensionless] 
q, : number of active sites in a segment of the component i 

[dimensionless[ 
0 : surface area fraction of component i [dimensionless] 
0,' : fractional parameter of component i corresponding to ad- 

ditional molecular parameter q,' [dimensionless] 
o : configura:ion identity variable of k-ghost molecular seg- 

ment in the decorated cell [dimensionless] 
"c,, : variables of UNIQUAC defined by Eqs. (2) and (3) 

[dimensionless] 
~, : volume fraction of component i [dimensionless] 
~, : angle between the directionally active sites of the com- 

ponent i [radian] 
~o, : segment directionality for the first active site of the com- 

ponent i [dimensionless] 
r : segment directionality for the second active site of the 

component i [dimensionless] 
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